

TERMINATION OF ALGORITHMS

by

Zohar Manna

Computer Science Department
Carnegie-Mellon University
Pittsburgh, Pennsylvania

April 1968

r-.JP D C
Submitted to the Carnegie-Mellon University (njiO^rPnri OOf
in partial fulfillment of the requirements j(_i'

for the degree of Doctor of Philosophy In' JUN2 1 1968

B

This work was supported by the Advanced Research Projects
Agency of the Office of the Secretary of Defense (SD-146)
and is monitored by the Air Force Office of Scientific
Research. Distribution of this document Is unlimited.

mmmtmmmmmi

ABSTRACT

The thesis contains two ports which are self-contained

units. i

In Part) we present several results on the relation

betweenl

1. ^the problem of termination and equivalence of programs and

abstract programs, and

2. the first order predicate calculus.

Part MJ is concerned with the relation betweerj^

1. the termination of interpreted graphs, and

2. properties of well-ordered sets and graph theory.

\

ACKNOWLEDGMENTS

I am Indebted to Professors Robert Floyd and Alan Perils for

their guidance in this research.

i also wish to thank Professors David Oooper and Abraham Ginzburg

for their help in the early stages of my work.

I received valuable comments from Professor John McCarthy,

Professor Peter Andrews, Professor Donald Loveland, and Dr. David

Shafer.

I am also grateful to the graduate students in the Department of

Computer Science for their assistance, especially: Richard Waldinger,

James King, Darius Irani, Frederick Haney and Robert Wagner.

.... I

.... 4

s. II

.... 12

Jbfela Of Oontents

PART I

Introduction

Chapter I; Mathematical Background

1.1 The (First-Order) Predicate Calculus. . .

1.2 The Validity-Problem of the Predicate Calculu

1.3 Directed Graphs

Chapter 2; Definitions

2.1 Abstract Programs M

2.2 Programs 17

2.3 Interpreted Programs , . . 19

2S£lSL2'' Termination of Programs and Abstract Programs

3.1 The Algorithm to Construct WAp (Algorithm I) 23

3.2 Termination of Programs (Theorem I) 27

3.3 Termination of Abstract Programs (Theorem 2) 33

3.4 The Termination-Problem of Abstract Programs 37

■£haP+er 4; Equivalence of Programs and Abstract Programs

4.1 The Algorithm to Construct WAp Ap, (Algorithm 2) 41

4.2 Equivalence of Programs (Theorem 3) 46

4.3 Equivalence of Abstract Programs (Theorem 4) 50

Chapter 5; Termination of Non-Deterministic Programs and
Non-Deterministic Abstract Programs

5.1 Definitions 54

5.2 Weak Termination (Theorems 5 and 6) 59

5.3 The Algorithm to Construct U^ (Algorithm 3) 61

5.4 Strong Termination of Non-Determinlstlc Programs
(Theorem 7) 64

5.5 Strong Termination of Non-Oeterminlstic Abstract
Programs (Theorem 8) 66

References 70

PART li

Introduction 72

Chapter I: Mathematical Background

i.l Well-Ordered Sets 74

1.2 Directed Graphs 75

Chapter 2; Definitions 79

Chapter 3; Termination of Interpreted Graphs

3.1 Theorem I 83

3.2 Theorem 2 88

Chapter 4: Applications

4.1 Example I 90

4.2 Example 2 96

References 99

about the equivalence of abstract programs can be obtained Just by

applying well-known results In logic.

The corresponding result for programs suggests a new approach for

proving the equivalence and correctness of 'real1 programs.

Chapter 5 Is concerned mainly with the strong termination of

non-determlnlstlc programs and non-deterministic abstract programs.

In a non-deterministic program an assignment of values to its

Input variables does not necessarily define a unique execution of the

program. A non-deterministic program is said to terminate strongly

If for each assignment of values to i+s inpv; variables all possible

executions terminate.

The results of this chapter are a generalization of the results

obtained in Chapter 3. These results have an application In proving

the convergence of recursively defined functions.

INTRODUCTION

In this part of the thesis we shall present several results on the

relation between:

1. the problem of termination and equivalence of programs and

abstract programs, and

2. the first order predicate calculus.

An abstract program (program schema) is a program, but with

function, predicate and constant symbols, instead of specified

functions, predicates and constants. Thus, an abstract program AP

may be thought of as represenMng a family of (real) programs. By

specifying an Interpretation 3 for the symbols of AP, a program (AP,3)

of this family is obtained. The program contains a set of input

variables. Each assignment of values to the input variables defines

a (unique) execution of the program.

Chapter I (Mathematical Background) and Chapter 2 (Definitions)

are introductory chapters.

■^aP+er 3 ls «"«»•■ned with the termination problem of programs

and abstract programs. A program (AP,3> Is said to terminate If all

possible executions of the program terminate. An abstract program AP

Is said to terminate If for every interpretation 3, th« program (AP.3)

terminates.

Given an abstract program AP, an algorithm is described to

construct a well-formed formula WAp of the first order predicate

calculus, such that AP terminates if and only If WAp Is unsatisflabls.

I.e., ~WAp is valid, "nws implies that conclusions about the

termination of abstract programs can be obtained just by applying

well-known results in logic.

A corresponding result for programs is presented.

•g>aPter 4 ls concerned with the equivalence problem of programs

and abstract prcgrams.

Two programs (AP,3) and (AP',3) are said to be equivalent if

their »corresponding« execution sequences always terminate and give

the same final value. Two abstract programs AP and AP« are said to

bo equivalent If for every interpretation 3, the corresponding

programs {AP,3) and (AP1^) ard equivalent.

Given two abstract programs AP and AP', an algorithm Is described

to construct well-formed formula WAp Ap, of the first-order predicate

Iculus, such that AP and AP' are equivalent If and only If W
AP,AP'

Is unsatisfiable, i.e., ~WApfAp, is valid. Consequently, conclusions

ca

CHAPTER I: MATHEMATICAL BACKGROUND

, ()

~3A v »a

I.I Jha (First-Order) fcadialä ÄiSülüi
In this section we shall partially follow the exposition of Davis

and Putnam [I960].

The symbols of which our formulas are constructed are:

(9) Improper symbols

punctual ion marks

logical symbols

primitive constants T and F*

(b) Constants

n-adlc function constants f I t' ^ '' n ^

[f0 are caI led |pdlvidual constants],

n-adlc predicate constants P, <' £ ' n ^

[p0 are called prepositional constants].

(c) Variables

Individual variables xi 2

n-adlc predicate variables q^ (i i I, n ^ 0)

i -^ ^.iiaH nroDDsltlonal variables] [q0 are called proposltlonal variables].

m the following, we shall use also y, as Individual variables
and a. as Individual constants.

The subscripts and the superscripts will be omitted whenever their

omission can cause no confusion.

Among all the expressions which can be formed using these symbols,

we distinguish three classes which are defined recursively as follows:

(a) Terms

1. Each Individual variable Xj and each Individual constant f0.

is a term;

2. If t|»+2'""+
n

(n i " are +erms, then so Is f"(t(,t2,...ft);

3. The terms consist exactly of the expressions generated by I

and 2.

(b) Atomic formulas

I. T, F, Pj and q° are atomic formulas.

2« If *\,*2""'*n ^n <* " are +enns' *h*n the expressions

P|<+|.t2,.,,,tn) and q^Ctj,^,,,.,^) are atomic formulas.

3. The atomic formulas consist exactly of the expressions

generated by I and 2.

(c) Wei I-formed formulas (wff's)

1. An atomic formula Is a wff.

2. If R Is a wff, then so are ~R, (x^R [x Is said to be

universal iv quantified], and Ox^R [x is said to be

exlstentlaily quantified].

3. if R and S are wtfs, then so are (R =) S), <R A S), (R V S),

and (R ■ S).

4, The wff's consist exactly of the expressions generated by I,

2, and 3.

Parentheses will be omitted whenever their omission can cause no

confusion.

An occurrence of x. In a wff R Is a bound occurrence if it Is In

a wf-part of R of the form (x^S or (ax.)S. An occurrence of x. which

Is not bound Is called a free occurrence, x. Is free in R if it has

at least one free occurrence in R. R is closed if It has no free

Individual variables.

Our next step Is to single out from the class of wff's those which

are logical ly val Id. This can be done either by specifying axioms and

rules of Interference or by referring to "interpretations" of the wff's

of the system, and by a basic result due to Gödel (GBdel Oompleteness

Theorein) both of these procedures will lead to the same ;lass of

formulas. For our present purposes it is most convenient to use the

latter formulation employing "interpretation".

An interpretation .^ for a wff W consists of a non-empty set of

elements D (called the domain of the Interpretation) and assignments

to the constants of W:

1. To each function constant f1? which occurs in W, we assign a

totai function of n variables ranging over D-, whose vaiues
o

are in D.. [if n = 0, the Individual constant f? Is assigned

some flxod element of D..]

2. To each predicate constant p1? which occurs in W, we assign a

totai function of n variables ranging over D , whose values
o

are T or F. [if n = 0. the propositlonal constant p. is

assigned the value T or F.]

Given a wff W and an Interpretation 3 for W [notation: (W,^)].

An assignment T for (W,^) consists of assignments to the variables

of Ws

i. To each free individual variable x. in W, we assign some

fixed element of D-.

2. To each predicate variable q? which occurs In W, we assign a

total function of n variables ranging over D , whose values
o

are T or F. [if n = 0, the propositlonal variable q. is

assigned the value T or F.]

Let W be a wff. Then given an int .'■pretation 3 for W and an

assignment r for (W,3) [notation: (W,3,r)], a value T or F will be

assigned to (W,3,n. This value is obtained simply by using the

assignments of 3 and T, Interpreting F as falsehood and T as truth,

using the usual truth tables of ~, A, V, z>, and a, and interpreting

the universally and existentially quantified variables in the standard

way.

(W,3) Is said to be:

1. valid, if for every assignment T, (W.g.D has the value T.

2. satisflable (or consistent), if (W,3,r) has the value T for some

assignment T.

3. unsatisfiabie. if it is not satisfiable.

Clearly, (W,3) is valid if and only if M^g) is unsatisf Iabie.

A wff W is said to be:

1. val Id. if for every Interpretation 3, (W,3) is valid.

2. satisfiable (or consistent). If (W,3) is satisfiable for some

interpretation 3.

3. unsatisfiabie. if it is not satisfiable.

Clearly, W is valid j_f and only if ~W is unsatisf iabie.

A wff is called quantifier free if it contains no occurrence of

or (axj).

A wff is In prenex jrmaI form, if it begins with a sequence of

(x.) or (axj)

quantifiers (x.) and Ox.) in which no variable occurs more than once

(«.led the£relix), and if the sequence ,s fo/.o.ed by a „uant.f.er

free wff (called the matrl^K

The disjunction of the wff «s R|,R2 nd ^ ^^^ ^

| «2 ... V Rn, their conjunction Is the wff R, A R2 A ... A R .

A Uterai Is a wff which Is either an atonic formula or of the

form~R, where R is atomic-.

A ikuss Is a disjunction R(V ^ v ... v Rn in which each R,

's a literal and in which no atomic formula occurs twice.

A conjunction of clauses is said to be a ^ Jn coniunctive
normal form.

Let W be a wff in prenex normal form. T^en its iuactional to

Aiu Is defined as follows:

Let the variables in the orefl^ r,f u /1- _ J me prerix of W (In order of occurrence) be

VX2'-"'V Let the existential ly quantified variables in the

prefix be x x ■* -n. *
i,' i2

XIM' Then for every j, I < j < M:

'. the quant;fler (gx^, is to be deleted from the prefix, and

2. each occurrence of x^ in the matrix of W is to be replaced

by an occurrence of the term f? (x^.x^ x,), where

(>V' (xk_) (x
k >. <1^0, are all the universal

quantifiers that precede Qx) ln the prefix of W and f*
j '

10

Is the first q-adlc function constant which does not occur

In W and has not been used previously In this process.

We shall use the following known result;

W \s satlsf lable If and only If its functional form Is satisf lable.

II

1-2 JaSVaH^-Pro^ofl^Pj^^^

That is, there can be no »Igorlth. which takes as .„put any wff and in

-II cases tenninates with a decision as to whether the wff is valid or

not.

But, the vanditr£r£Mem of the £r2acate.«icuius Js

-ni-decidabie. That is. there are algorithms, caiied ^0.-^^

2-cedures. which take as input any wff and: (,) If +he wff [s va|id

the algorith. will stop and say so; (2) if the wff is not valid the

algorithm will never stop.

The algorithms have undergone successive reductions so that by

now they have a simpie structure. |„ this work, we shali use one

-cent aigorithm based on the resolution ^rinci^ (Robinson [i965],.

Though the val idity-probie. of the predicate-calculus is undecidabie

there neverthe.ess exist classes of wff-s for which the problem is

decidable. For example, the validity-problem is decidable for the

following three classes:(l)

'• W, = iwlw Is a wff in prene^normaI form, without function

constants, and with prefix of the form V...va...aj,

2. W2 = iwlw is a wff in prenex-normai form, without function

constants, and with prefix of the form V...V3V...VJ,

3. W3 = iwlw is a wff in prenex-normaI form, without function

constants, and with prefix of the form V...VHSV...VJ.

See Ackermann [195411 or Church D95611 Section 46.

12

1.3 Directed Graphs

A directed graph G Is an ordered triple <V,L,A> where:

i. V Is a non-empty set of elements called the vertices of 6;

2. L Is a non-empty set of elements called the labels of G; and

3. A Is a set of ordered triples (Vjjt.v*), where vtV, v'eV,

and icL. These triples are called the arcs of G.

If V and L are finite sets, G is called a finite directed graph.

Let a = ^v,l,v,) be an arc of a directed graph. Then, we define;

1. v - the Initial vertex of the arc,

2. i - the label of the arc,

3. v' - the terminal vertex of the arc.

And we sha 11 say that the arc a leads from the vertex v is. ^e

vertex v'.

Let v be a vertex of a directed graph. Then,

1. The number (finite or infinite) of arcs a, aeA, s.t. v is the

initial vertex of a is called the out-degree of v.

2. The number (finite or infinite) of arcs a, otft, s.t. v Is the

terminal vertex of a is called the ln-degree of v.

13

A finite path of a graph G (path, for short) Is a finite sequence

of n arcs of G, n j; I,

(Vj .1. ,v.), (v ,i. ,v), (v. ,t. ,v. '),
'l 'l '2 '2 '2 '3 'n 'n 'n+l

s.t. the terminal vertex of each arc coincides with the Initial vertex

of the succeeding arcs.

We say that the vertices v. ,v. ,...,v. are QH the path, and
'l '2 n+l

that the path .joins the vertices v. and v.
'l 'n+l

"»I»» ■»■ n«,.. ..

14

CHAPTER 2: DEFINITIONS

2.1 Abstract Programs

An abstract ^roaram (or program schema) AP consists of:

I. A finite directed graph <V,L,A>. with

(a) exactly one vertex S.V with in-degree 0 (i.e., no arcs leading

to S), called the start vertex:

(b) exactly one vertex H.V with out-degree 0 (i.e., no arcs

leading from H), called the ;,alt vertex: and

(c) every vertex v.V is on some path that joins S and H.

2. (a) a set of m, m ^ 0, distinct individual variables

V = (VV2.'..,ym), called input variables: and

(b) a set of n, n> I, distinct individual variables

x= (x|,x2,...,xn), called program variables.

3. With each arc o, = (v,i,v<)eA there is associated:

(a) a quantifier free wff ^ called the test predicate of ■>: and

(b) an n-tuple 7 = (t(a) +la) +<<*), x ..
a lT| ' T2 '•••'+n ' of terms called the

assignment function of a.C''

The wff ^ does not contain any predicate variables.

The Intended interpretation is

v: If <fa then [replace simultaneously each variable x bv t^

go to v'J.

15

The wff 9a and the terms i1** do not contain Individual variables

other than^and x.(l) If v = S (I.e., « Is an arc leading from the

start vertex) the wff ^ and the terms t" do not contain the program

variables 7.

In addition, an abstract program should satisfy the following

restriction:

4. For every vertex v(v ^ H), if or,,^ ^ is the set of all arcs

leading from v, the set of the test predicates cp .m ,....» Is

(a) complete, i.e., (x)(y) U y cp V ... V «p] Is valid, and

- N

(b) mutually exclusive. I.e., (3x)(ay) U A «pi is unsatlsfiabU
Or. Or .

for every pair (I,j), | ^ i ^ j ^ N#
J

We have restricted <pa to be a quantifier free wff. However, all

the theorems presented in this work are true also in the case when cp

is anyjm that does not contain free individual variables other than
y and x.

16

Example

The following diagram represents an abstract program. We shall

refer later to this abstract program as AP*.

x ■«- f(x)

where

a - Individual constant,

f - monadic function constant,

p - monadic predicate constant,

y - input variable,

x - program variable.

17

2.2 Programs

An Interpretation 3 o\ an abstract program AP consists of a

non-empty set of elements 0^ (caI led the domain of the Interpretation)

and assignments to the constants of AP:

I. To each function constant f" which occurs In AP, we assign a

latal function of n variables ranging over D , whose values

are in D^. [if n = 0, the Individual constant f" is assigned

some fixed element of D .]
o

2. To each predicate constant p" which occurs In AP, we assign a

iStSl function of n variables ranging over D , whose values
o

are T or F. [if n = 0, the propositlonal constant p° is

assigned the value T or F.]

Let AP be an abstract program and 3 an Interpretation of AP. The

pair (AP,3) is called a program.

Example

Consider the abstract program AP» of sec. 2.1. Let 3« be the

following Interpretation of AP»:

D Is I (the domain of the Integers),

f(x) Is x + I,

p(x) is x = 0, and

a is -I.

18

Then the program (AP*,3*) can be represented by the diagram:

In order to give a rough Idea of what will follow in the next

section, let us only mention that the Algol meaning of this diagram is:

START: if v=0 then Cx •*• v: go to 3] else [x •'- -I; go to l];

I: If x=0 then Cx *■ x; go to 3] e I se [x •*- x ■*• I; go to 2];

2: If x^O then Tx * -I: JO to 3] else [x * x; HALT];

3: If xO then [x *■ x; HALT] eIse [x ■»- x + I; CJQ to 3].

19

2.3 Interpreted Programs

Let (AP,3) be a program. Then tho result obtained by assigning

values Y* Y*'D«' » ^or ^e Input variables y of the program - is called
o

the interpreted program (AP^/y).

Example

By assigning the value I to the input variable y of the program

CAP»,3») of sec. 2.2, we obtain the interpreted program (AP*,3*,I):

Programs with no input variables (i.e., m = 0) will be considered
as interpreted programs.

20

The Interpreted program (AP,3,Y) defines an execution sequence

<AP,a,V> which is a (finite or Infinite) sequence of triples

a(,).v(l).x("), U(2>,v(2)^2>,. U(3'(v
(3),x<3))(.

where.

1. U(J),v<j),x(J))e L x V x (D)n for every j,j z '•

2. (4{l),v('),l<(')) is the first triple in the sequence if and

only if there exists an arc a = (S,jt ,v)eA s.t.

cpa(7) = T and x(l) = ta(v).
(l)

3. U1^,^^) and (Jt
(j+l),v(J+l),x(j+l)) are two successive

triples in the sequence If and only If there exists an arc

*= (v'-iVJ+'V-i+^.A s.t.

^(x^'T and lV+l) -l^.y).™

4. The sequence is finite and (jt(q),v(q) ,x(q)), q 2: I» Is the

last triple of the sequence if and only if v q = H. In

<p (y) and t (y) stand for the result of substituting y for y in

<o and t . Ya or

2«p (x^'.Y) and t (x^'.y) stand for the result of substituting

x "' for x and y t°r Y 'n fa
and ^a'

21

this case x q is called the value of the execution sequence

<AP»3»Y> and is denoted by val ^P,^,^» ,

In other words, execution always starts at the start vertex. On

execution of the j step, j i I, control moves along the arc

a = (v J ,jt J ,v J), where v = S, and 9 represents the condition

that this arc is entered. The value of each program variable x. Is

replaced in the j step by the current value of f.a\ simultaneously.

So, x represents the current value of the program variables x after

executing the j step. Execution stops whenever control reaches the

halt vertex.

Example

The interpreted program (AP#,3*,i) defines the following execution

sequence <AP*,5*,I>:

(I, I,-I), (3,2,0), (5,3,-1), (7,3,0), (8^,0).

Let (AP,3,Y) be an interpreted program, and let vsV be any vertex

of AP. Let 6 be a specified total predicate from (D^)" into lT,Fj.

Then,

1. 6 i s ca 11 ed a valid predicate of v for (AP^y)

if

22

V5, 5c (D) : J_f there exists a triple of the form (J^V,?)

in <AP,3,Y>, for some jleL, then 6(5) = T.

2. 6 is called the minimal valid predicate of v for (AP,3,v)

if

V?, 5« (0)": 6(?) = T JJ_ and onlj^ J_f there exists a triple

of the form (jt,v,|) in <AP,3,Y>, for some jtsL.

Example

The predicate x< 0 is a valid predicate, while the predicate

x = -I is the minimal valid predicate, of the vertex I for the

interpreted program (AP*,3*,I).

BLANK PAGE

23

CHAPTER 3: TERMINATION OF PROGRAMS AND ABSTRACT PROGRAMS

3.1 The Algorithm to Construct W.»

In this section we shall describe an algorithm to construct from

a given abstract program AP a wff W.p, called the wff of AP. In

section 3.3 we shall state results about the relation between AP

and WAp.

AI gor i thm I

Let AP be any abstract program with program variables

x = (x. .x-,... ,x), n > I, and input variables (y.,y7,...,y), m>0.

We shall construct the wff W.p in three steps:

Step I

Associate with every vertex v. of AP a predicate variable q.,

where the q.'s are distinct n-adic predicate variables.

Step 2

Let a = (v.,i.v.) be any arc of AP.

In step I we have associated with the vertex v. the predicate

variable q., and with the vertex v. the predicate variable q..

We shall define the wff W (the wff of the arc a) as
a

24

But.

1. ^ v| = S (i.e., v. is the start vertex of AP), then replace

the occurrence of q,(x) in W by T, and
i a

2. if v. = H (i.e., v. is the halt vertex of AP), then replace

the occurrence of q.(t) In W by F.
J a Of '

Step 3

Let a|,a2,.. .,aN be the set of al I the arcs of AP. Then define

WAp (the wff of AP) as:

(x)[W AW A ... A W]
a, a2 aN

(I)

Note that the input variables y are free variables in WA_.
Ar

25

The wff W.D, of the abstract program AP« of sec. 2.1 will be

obtained as follows:

Combining steps I and 2 we obtain

~p(v) CD x »a f ,

p(y)

x * f(x)

(3)

~p(x)

P(x)

x ■»- y

(4)

s~p(x)

p(x)

(5)

(6)

-fCx)

~p(x) x * f(x)

W.: T A ~P<y) = V'

W2: T A p(y) => qj'y)

W,: q^x) A ~p(x) r> q2(f(x))

W4: q^x) A p(x) 3 q3(x)

W.: q2(x) A p(x) ^qjfa)

W6: q2(x) A~p(x) ^ F

(7)

26

W7: q3(x) A ~p(x) => q3(f(x))

W8: q3(x) A pM => F

Then by step 3 It follows that,

WAP»: M^\ A W2 A W3 A W4 A W5 A W6 A W7 A Wg]

27

3.2 Termination of Programs

Deflnl+lon I

The program (AP.J) Is said to terminate If Vv. Y«'0»5 » +he

execution sequence <AP ,3,Y> IS finite.

We are ready now to state the main result of this chapter.

Theorem I

The program (AP,3) terminates

If and only if

(WAp,3) is unsatlsflable [or equlvalently, (~WAp,3) Is valid].

Proof

We shall prove that the program (AP^) does not terminate if and

only If (WAp,3) Is satlsfiable.

I. (AP,3) does not terminate =» (WAp,3) is sati sf iab ie.

If the program (AP,3) does not terminate, there exists a

y, Y«(D-)m, such that the execution sequence <AP,3,Y> is infinite.

Let us assign to each predicate variable q, in WAp, the minimal

valid predicate of the vertex v. for the Interpreted program (AP,3,Y).

Note that since the execution sequence <AP ,3,Y> is Infinite, I.e.,

control never reaches the halt vertex, it follows that the predicate F

is the minimal valid predicate of the vertex H for the interpreted

program (AP,3,Y).

28

Let T consist of the above assignments for the q.'s and with y

assigned to y. Following the construction of W,- (see Algorithm I),

it is clear that the value of (WAp,3,r) is T, i.e., (WAp,3) Is

satisflable^and this completes the proof In one direction.

2- (W
AP»3'

is satisfiable =» (AP,3) does not terminate.

If <wAp.3) 's satlsfiable. It means that there exists an

assignment T for (WAp,3) such that the value of (WAp,3,r) i s T, T

consists of assignments of specified total predicates 6., mapping

(D) into lT,Fi, for the predicate variables q., and an assignment

Y» Y«^«*^ » for +he ^ree variables y.

By the construction of WAp (see Algorithm I), this implies that

each fij is a valid predicate of the vertex v. for (AP,3,Y), and

therefore that F is a valid predicate of the halt vertex for (AP^y).

This implies that the execution sequence <AP,3,y> is Infinite

(i.e., execution does not reach the halt vertex). So, (AP,3) does not

terminate.

q.e.d.

29

Let us consider the program (A^,^» «here

I. the abstract program ÄP Is

oy- x ■«- y

~p(x)

p(x)

lx + f(x)

<D

and

2. the interpretation ^ is

D^ = I (i.e., the domain of the non-negative integers),

p(x) Is x = 0, and

f(x) is x - I, where x ^ I Is defined as {x"' !^ ^ > °
^ 0 if x = 0.

The program (A'?,'}) can be represented by the domain D^ = I and

the d lagram

ay-
x i« 0

x = 0 -0

30

Using Algorithm I we can construct W.-g, which Is
Or

(x>l [TAT oyyj]

A [qjfx) A~P(x) => q^fix))]

A tqjCx) A p(x) o F]J.

The pair (W^) can be represented by the docnain C^ = I+ and
o

^' (x)l [TAT =.q|(y)]

A [q, (X) A x ^ 03 q (x i |)]

A[q(x)Ax=0o F]J.

We shall prove that the program (Ap.g) terminates by using

Theorem I, i.e., by proving that (W^jf) unsatisf lab le.

We shall use the first order theory N, which formalizes elementary

number theory. We assume that the reader is familiar with this theory0'.

The theorems of N that we shall use are:

Tl: Gx^q^x,)^ Sx2)[q|(x2)A ^ [X3 < x2 3-q, (x3)]]

(an instance of the Least-number Principle), and

T2: (x)[x ^ 0 =) x ■1 I < x].

Thus, in order to prove that (WA~3) is unsati sf iable, we shall

prove that ^ * T, A ^ is unsatisfiable (considerinp x = 0, x < y

and x - I just as symbols, i.e., the predicates x = 0 and x < y

as predicate constants and the function x ^ I as function constant).

Kleen^Kr^cJlon^^^" 8' ^^ [,964] C^ 3' -

31

Ttie Proof:

The prenex normal form of \«N A T. A T_ is:
AP

ax2)(x|)(x3)(x)l q^y)

A [q^x) A x / 0 3 q^x - I)]

A [q^x) A x = 0 3 F]

A [q.(x.) r> [q. (x,) A [x, < x, =>~q. (x)]]] "r 2 3" -2- ^|-3'

A [x)< 0 Z) x- I < x]J,

Then by changing the matrix to conjuctive normal form and

replacing x_ by a and y by b (a and b are individual variables), we

obtain the wff W»:

(x|)(x3)(x)l q,(b)

A t-q

A f-q

A hq

A Ir-q

A [x = 0

(x) V x = 0 V q^x ■1 I)]

(x) V x)< 0]

(x^ V q^a)]

(x^ V x3 < a V ~q|(x3)]

V x - I < x]}.

Clearly. W^ A T, A T_ is satisfiable if and only I f W» is
 XP I 2

sat i sf I ab I e.

We are going to prove that W* is unsatisfiable by using the

resolution principle. We assume that the reader is familiar with this

technique (see Robinson [1965]).

The Ii st of clauses is:

I. q^b)

~q. (x), x = 0, q.(x - I)

32

3. ~q|(x) , x t 0

4. -qjCx!), q^a)

5. ~<\i (x^, x3 V a, ~q|(x3)

6. x = 0 , x - I < x.

Then by resolving we obtain:

7- ^i(a) by I and 4 (x. = b)

8- a <* 0 by 3 (x = a) and 7

9- q|(a " l) by 2 (x = a), 7 and 8

10. a - I < a by 6 (x = a) and 8

I'- ~q|(a- I) by 5 (x, = a, x3 = a - I), 7 and 10

12- /_/ by 9 and II

So, by resolving, we inferred the empty clause/T, which implies

that W» is unsatisfiable, i.e., (W^^f) is unsatisflable. Therefore

it follows, by Theorem I, that the program (XP^) terminates.

33

3.3 Termination of Abstract Programs

Definition 2

An abstract program AP is said to terminate If for every

Interpretations, the program (AP,3) terminates.

The following theorem follows from Theorem I and Definition 2.

Theorem 2

An abstract program AP terminates

I f and only If

WAp is unsatisfiable [or equivalently, ~WAp is valid].

Proof

AP terminates,

if and only if (follows by Definition 2)

for every interpretation 3, the program (AP,3) terminates,

if and only if (follows by Theorem I)

for every interpretations, (WAp,3) is unsatisfiable,

i f and only if

W.p i s unsatisfiable.
q.e.d.

Theorem 2 transforms completely the problem of termination of

abstract programs to an equivalent problem in logic. This enables us

to obtain many results about the problem of termination of abstract

programs, just by using well-known results in logic. The following

example illustrates one of them. Other results are presented in the

next section.

34

Example

We shall prove that the abstract program AP* (see sec. 2.1)

terminates, by using Theorem 2, i.e., by proving that W.^ is
Ar*

unsatisfiable.

In sec. 3.1 we have already constructed WAp>, which is

(x)i [T A~p(y) => q^a)]

A [T A p(y) => q3(y)]

A [q^x) A ~p(x) 3 q2(f(x))]

A [q^x) A p(x) 3 q3(x)]

A [q2(x) A p(x) 3 q3(a)]

A [q2(x) A ~p(x) 3 F]

A [q3(x) A ~p(x) 3 q3(f(x))]

A [q3(x) A p(x) 3 F]j.

By changing the matrix of W^ to conjuctive normal form, and

replacing y by b (where b is a new individual variable), we obtain

"AP*-

(x)l [p(&, V q^a)]

A [~p(b) V q3(b)]

A [-^(x) V p(x) V q2(f(x))]

A [-MI^X) V ~p(x) V q3(x)]

A [~q2(x) V ~p(x) V q (a)]

A [~q2(x) V p(x)]

35

A [~q3(x) V p(x) V q3(f(x))]

A [~q3(x) V~p(x)]].

Clearly, W' is satlsfiable if and only if WAp# is is sa+isfiable.

We are going to prove that W' is unsatisfiable by using the

resolution principle. We assume that the reader is familiar with this

technique (see Robinson [1965]).

The list of clauses is:

1. p(b), q^a)

2. ~p(b), q3(b)

3. -q! (x), p(x), q2(f (x))

4. ~q| (x), ~p(x), q3(x)

5. ~<i2(x), ~p(x), q3(a)

6. ~q (x), p(x)

7. ~q3(x), p(x), q3(f(x))

8. '^3(x), ~p(x).

Then by resolving we obtain

9. ~p(b) by 2 & 8 (with x = b)

10. q^a) by I i 9

11. -^^x), q2(f(x)), q3(x) by 3 & 4

12. q2(f(a)), q3(a) by 10 i II (with x = a)

13. ~q2(x), q3(a) by 5 i 6

36

14. q^a) by 12 4 13 (wj+h x = f(a))

15. ^(x), q3(f(x)) by 7 i 8

l6- ^3^(8)) by 14 4 15 (wi+h x = a)

17. p(a), q2{f(a)) by 3 (with x = a) 4 10

18. p(a), p(f(a)) by 6 (with x = f(a)) i 17

19. ~q3(a), p(f(a)) by 8 (with x = a) i 18

20. ~q3(a), ~q3(f(a)) by 8 (with x = f(a)) i 19

21. ~q3(a) by 16 i 20

22- L./ by 14 4 21.

So, by resoiving, we inferred the empty clause /_/, which implies

that W^ Is unsatisfiable, i.e., WAp)t is unsatl sf iable. Therefore it

follows, by Theorem 2, that AP» terminates.

37

3.4 The Termination Problem of Abstract Programs

It is a we I I-known resu11 that the termination Problem of

abstract programs is undecidabie (see Luckham, Park and Peterson

[1967]). That is, there can be no algorithm which takes as input

any abstract program AP and in all cases stops with a decision as to

whether the abstract program terminates or not.

But,

Corollary 1: The termination prob I em of_ abstract programs j_s

semi-dec!dab Ie.

That is, there are algorithms (called semi-decision procedures),

which take as input any abstract program AP, and

1. If AP terminates, the algorithm will stop and say so;

2. If AP does not terminate, the algorithm will never stop.

Since the validity problem of the predicate calculus is semi-

decidable. Corollary I follows directly by Theorem 2.

Moreover, any known semi-decision procedure for solving the

validity problem of the predicate calculus can be used, together with

Algorithm I, as a semi-decision procedure for solving the termination

problem of abstract programs. In fact, in sec. 3.3, we have used the

resolution principle, which is a semi-decision procedure for solving

38

the validity problem of the predicate calculus, to prove the

termination of the abstract program AP» of sec. 2.1.

Though the termination problem of abstract programs is

undecidable, there nevertheless exist subclasses of aostract programs

for which the termination problem is decidable.

Corollary 2

The termination problem for the follow Inq classes is dacidable:

1. C| = IAPIAP is an abstract program without function

constants f", n > Ij,

2. C_ = IAPIAP is an abstract program which has only one program

variable x (i.e., n = I), and all the occurrences of

function constants in AP are in terms of the form f?
i

or f!(x)i.

3. C = [APIAP is an abstract program which has only two program

variables x. and x. (i.e., n = 2), and all the

occurrences of function constants in AP are in terms

f°orf2(VX2) of the form f? or f?(x.,x)J.

Proof

For each i, I ^ ' < ^» +he decidability of the termination problem

for the class C. follows, by using Theorem 2, from the decidability of

the validity problem for the class W. (see sec. 1.2).

39

Let us prove this assertion for I = 2, i.e., we shal I prove the

decidability of the termination problem for the class C- by using

Theorem 2 and the decidability of the validity problem for the doss

W-, where

W2 = iwlw is a wff in prenex normal form, without function

constants, and with prefix of the form V.. .VSV... vj.

The proof of the assertion for the other classes is similar.

Let AP be any member of the class C2, i.e., AP Is an abstract

program which has only one program variable x (i.e., n = I), and all

the occurrences of function constants in AP are in terms of the form

f°'f2'---'fk and f](xM2(x)'---'f,i(x) (k'lZ 0)-

Then WAp is of the form (x)M, where M is a quantifier free wff

and all the occurrences of function constants in M are in terms of the

form f°'f2 fk0 and f|(*M2(><).--..fj(x).

Let W^p be the wff Ow,)... (3^) (x) (3z,)... (3z JM1, where M1

is the result of substituting w., i = l,2,...,k, for each occurrence

of f. in M and substituting z., i = l,2,...,i, for each occurrence of

f.(x) in M, i.e., M1 contains no function constants.

W^p Is satisfiable if and only If W. is satisfiable, since W.D is

the functional form of WJ„.
AP

40

Let WJJp be the wff (w)... (wk) Ox) (z,)... (Zj) [~M'], i.e., W^p Is

just~W' . Clearly, W" Is valid if and only If W' Is unsatisfiable.

Since KV- Is In prenex normal form, without function constants,

and with prefix of the form V...yäV...V, It follows that W^, is a

member of W-. But the validity problem for the class W_ Is dec I dab Ie,

so it is decidab Ie whether W" is valid or not. AP

Since by the previous assertions W"p is valid If and only if AP

terminates, this Implies that it is decldable whether AP terminates or

not.

q.e.d.

Known decision procedures for solving the validity problem for

the class W. can be used, together with Algorithm I, as a decision

procedure for solving the termination problem for the class C.. For

example, we can use Friedman's semi-decision procedure for the

predicate calculus (see Friedman [1963]), which Is n decision procedure

for the classes W., VL, and W,.

Note that the abstract program AP* of sec. 2.1 belongs to the

class C_.

41

CHAPTER 4: EQUIVALENCE OF PROGRAMS AND ABSTRACT PROGRAMS

4.1 The Algorithm to Construct W^p Ap,

Definition 3

Two abstract programs AP and AP' are said to be comparable it

1. they have the same set of program variables x = (x|,...,xn),

and

2. they have the same set of input variables y = ly|,...,ym).

In this section we shall first describe an algorithm to construct

from two given comparable abstract programs AP and AP', a wff W^p ^p,

(the wff of AP and AP'). In section 4.3 we shalI state results about

the relation between AP, AP' and WAp ^p,.

AI gor i thm 2

Let AP and AP' be any two compaiable abstract programs. We shall

construct the wff W^p Ap, in four steps:

Note that any two abstract programs can be considered as
satisfying condition 2, for if the two abstract programs do not have
the same sets of input variables, just add to each program an
appropriate set of dummy input variables.

42

Step I

Associate with every vertex Vj of AP a predicate variable qj [we

shall denote by q^ the predicate variable associated with the halt

vertex H of AP], and associate with every vertex vj of AP' a predicate

variable qj, where all the q. and the qj are distinct.

Step 2

Let a = (v.,i,v.) be any arc of AP.

In step I we have associated with the vertex Vj the predicate

variable q., and with the vertex v. the predicate variable q..
i J J

We shall define the wff W^ (the wff of the arc a) as

fiul,

if v. = S (i.e., v. is the start vertex of AP), then replace the
i i

occurrence of q,(x) In W^ by T.

Step 3

Let cr' = (v'.,l,v'.) be any arc of AP'.

In step I we have associated with the vertex vj the predicate

variable q.', and with the vertex v'. the predicate variable q'..
i J J

We shall define the wff W^, (the wff of the arc or') as

V "i'*5 A V3 qj(V-

Sal.
I. if v! = S' (i .e., v.' is the start vertex of AP1), then

replace the occurrence of qf(x) In W^, by T, and

43

2. if V. = H' (i.e., vj Is the halt vertex of AP'), then

replace the occurrence of q'(t ,) in W . by ~q1,(t .).
j a a' nH or

Lefal02,...,QN be the set of all the arcs of AP, and

a\'a2'---'aM be the se+ of al1 ^e arcs of AP'. Then define W

as
AP.AP'

WAP,AP'! (x,[W
a|
A W

a2
A ••■A Wa A W^.A WaIA ...A W^.]. (I)

Example

Consider the abstract program AP**:

(I) ~p(y) A ~p(al x t-f(a)

where,

a - individual variable,

f - monadic function constant,

p - monadic predicate constant,

y - input variable,

x - program variable.

in W
Note that the input variables of AP and AP' are free variables

AP.AP'•

44

Using Algorithm 2 we shall construct the wff WAp# Ap##. where AP*

Is the abstract program that was presented In sec. 2.1.

~p(y) (I) x ♦<

pty)

x * HxK

(3).

~p(x)

)(x)

M)

x •<- y

sof>(x)

p(x)

(5)

J6)

(8)

"pU)

— q.

~p(xM x ♦■ fU)

(7)

45

WAP»,AP*»: Mi f T A ~p(y) 13 q^a)]

A [T A p(y) 3 q3(y)]

A [q^x) A ~p:x) n q2(f(x))]

A [qjtx) A p(x) 3 q3(x)]

A [q2(x) A p(x) 3 q-ta)]

A [q?(x) A ~p(x) => qu(x)]
r

A [q3{x) A ~p(x) 3 q3{f(x))]

A [q3(x) A p(x) 3 qH(x)]

A [T A ~p(y) A ^(a) 3~qH(f(a))]

A [T A~p(y) A p(a) r)~q (a)]

A [T A p(y) D-qH(y)]}.

46

4.2 Equivalence of Programs

Definition 4

Let AP and AP' be any two comparable abstract programs.

Let 3 be an interpretation that contains assignments for all the

constants that occur in AP or AP'.

Then the programs (AP.J) and (AP',3) are said to be comparable.

Definition 5

Two comparable programs (AP.g) and (AP'.g) are said to be

equivalent, i f

Vy, Y«(CL)m, b0+h execution sequences <AP,3,Y> and

<APl,3,Y> are finite and val <AP.3,Y> = val <AP,
,3,Y>.

Theorem 3

Two comparable programs (AP.g) and (AP1^) are equivalent,

i f and only if

(W AD1,3) is unsatisflable [or equivalently, ^WAP^AP"^' IS

va I id].

Proof

We shaI I prove that:

ay", Y«(Dcv)m' such +ha+ '■ <AP'3'Y> is infini+e'

or 2. <AP
,
,3,Y> is infinite,

or 3. both <AP,3,7> and <AP,,3,Y> are finite,

and val <AP,3,Y> I* val <AP,,3,Y>,

47

if and only If

(WAP AP"^' is satisfiable.

(i) =»

We have to consider three cases:

I. If the execution sequence <AP,a,7> is infinite, then (W.D .D,,3)
AP,AP

is satisfiable, since the value of (WAp>Apl ,3,r) Is T, where T consists

of the following assignments:

(a) Y assigned to y,

(b) to each occurrence of q. in WAp Ap, assign the minimal valid

predicate of v. for (AP,3,Y), and

(c) to each occurrence of q.' In WAp Apl assign the minimal valid

predicate of v.' for (AP'.g.y).

The result then follows from the construction of W,„ , ,
APjAP'

(Algorithm 2). Note that, since <AP,3,Y> is infinite, the minimal

valid predicate of H for (AP,3,Y) is F, i.e., by our assignment

qH
s F, and therefore ~q s T,

2. If the execution sequence <AP• ,3,v> is infinite, then (W.D .m,3)

is satisfiable, since the value of (WAP(Apl,3,r) is T, where T consists

of the following assignments:

(a) v assigned to y,

(b) to each occurrence of q. [except qH] in WAp Ap, assign the

minimal valid predicate of v. for (AP,3,Y),

(c) to each occurrence of q! In WAp Ap, assign the minimal valid

predicate of v.' for (AP'^/y), and

<d) qH
a T.

48

The result then follows from the construction of W^, ^p,

(Algorithm 2). Note thet ~qH ■ F, and s I nee <AP' ,3 ,Y> IS Infinite,

F Is the minimal valid predicate of H1 for (AP'^.YK

3. If both the execution sequences <AP,3,Y> Bnd<APl,3,Y> are finite

and val <AP,3,Y> * val <AP,,3,Y> then (WAp Ap,,3) is satisf lable^slnce

the value of (WAF1 ApM3.
r) 's T, where T consists of the following

assignments:

(a) Y assigned to y,

(b) to each occurrence of qj in WAp Apl assign the minimal valid

predicate of v. for (AP,3.V), and

(c) to each occurrence of q.' in WAp Ap, assign the minimal valid

predicate of vj for (AP'.S/y).

The result then follows from the construction of WAp Apl

(Algorithm 2). Note that we assigned to qH the minimal valid

predicates of H for (AP^J/y), I.e., 6 (x) = T If and only if

x = val <AP,3,Y>. Now, since val <AP,3,v> t val <AP,4J,Y>, It follows

that 6 (val <AP,4J,Y>) = F, i.e.,~6 (val <AP,45,^«) = T.

(II) «=

We shall prove that Jl (WAp ^,^5' is satisfiable wi th f, Y« (l^)m,

assigned to y, and both execution sequences <AP ,3,Y> and<AP,4S,Y>

are finite, then val <AP,3,Y> t vai <AP,^,Y>.

If (WAp Ap,.3) is satisfiable with Y assigned to y, it means

that there exist an assignment T such that (WAp Ap,,3»r) is T' where T

49

consists of the assignii.ant of y to y and assignments of specified

total predicates 6. and 6! (mapping (D-)n into lT,Fj) for q. and
o

q! respectively.

By the construction of W.p .p, (Algorithm 2), this implies that

each 6. is a valid predicate of the vertex v. for (AP,3,Y'.

especially 6U Is a valid predicate of the halt vertex H for (AP,3,Y'»
H

and therefore 6 (val <AP,3,Y» = T. Moreover, each 6; is a valid
rl I

predicate of the vertex v.' for (AP'^Y), and ~fiH is a valid predicate

of the halt vertex H1 for (AP'^/y), and therefore ~6H(val <AP',3,Y>) = T,

i.e.. 6H(va| <AP,
)3,Y» = F.

But since 61J(val <AP,3,Y>) = T, while 6 (val <AP,,3,Y» = F, it n n

follows that val <AP,3,Y> !* val <AP',3,Y>.

q.e.d.

50

4.3 Equivalence of Abstract Programs

Definition 6

Two comparable abstract programs AP and AP' are said to be

equivalent If for every interpretation % that contains assignments

for all the constants that occur in AP or AP', the programs (AP.JJ)

and (AP'.g) are equivalent.

Theorem 4

Two comparable abstract programs AP and AP' are equivalent,

i f and only if

W/^p^pi is unsatisf lable [or equi valently, ~W.p •□, is valid].

Proof

AP and AP1 are equivalent,

if and only if (by Definition 6)

for every interpretation 3, the programs (AP,3) and (AP'.J) are

equivalent.

If and only if (by Theorem 3)

for every interpretation 3, (WAp Ap.,3) unsatisfiable,

i f and only if

w/\p /\pi is unsatisf lable.

51

Theorem 4 transforms completely the equivalence problem of

abstract programs to an equivalent problem In logic. So, by Theorem 4

we can obtain many results about the equivalence problem of abstract

programs, just by applying well-known results in logic. In the

remainder of this section we shall present several such results.

It is a well-known result that

the equivalence prob lern of abstract programs i s undecidable.

That is, there can be no algorithm which takes as input any two

comparable abstract programs and in all cases stops with a decision

as to whether the abstract programs are equivalent or not.

This result follows directly from the undecidabi Iity of the

termination problem of abstract programs (see sec. 3.4), since an

abstract program terminates if and only if it is equivalent to

itself.

But, by Theorem 4 it follows that

Corollarv 3

the equivalence problem of abstract programs i s semi-deci dable.

That is, there is an algorithm (called a semi-decision procedure),

which takes as input any two comparable abstract programs, and

1. if they are equivalent, the algorithm will stop and say so,

2. if they are not equivalent, the algorithm will never stop.

52

Since the validity problem of the predicate calculus Is seml-

decidable. Corollary 3 follows directly by Theorem 4. Moreover, any

knovn semi-dec I si on procedure for solving the validity problem of the

predicate calculus can be used, together with Algorithm 2, as a semi-

dec Is Ion procedure for solving the equivalence problem of abstract

programs.

Though the equivalence problem of abstract programs Is

undecldable, there nevertheless exist subclasses of abstract programs

for which the equivalence problem is dec I dab Ie.

Corollarv 4

The equivalence prob I em for the fol lowing classes j_s decidable;

1. C| = IAPIAP is an abstract program without function constants

f". n> 1],

2. C2 = lAPiAP is an abstract program which has only one program

variable x (i.e., n = I), and all the occurrences of

function constants in AP are In terms of the form

f°or f!(x)J,

3. Cj = lAPiAP IS an abstract program which has only two program

variables x. and x (I.e., n = 2), and all the

occurrences of function constants in AP are In terms

of the form f? or f.(x.,x2)i.

53

That is, for each 1, I < i < 3, there is an algorithm which takes

as input any two comparable abstract programs AP, AP'tC., and in all

cases stops with a decision as to whether AP and AP' are equivalent or

not. This follows, by using Theorem 4, from the decidability of the

validity problem for the class W. (sec. 1.2).

Most of the results for the termination problem presented in

Chapter 3 are special cases of the results presented in this chapter,

especially corollaries I and 2 follows from corollaries 3 and 4

respectively, since every abstract program AP terminates if and only

if it is equivalent to itself.

Sec the proof of Corollary 2 in cec. 3.4.

■■<■* ; ■

PAGE

M^mmm

mmm

54

CHAPTER 5: TERMI NATI ON OF NON-DETERMINI STIC PROGRAMS

AND NON-DETERMINISTIC ABSTRACT PROGRAMS

5.1 Definitions

A non-deterministic abstract programCp is defined exactly as an

abstract program (see sec, 2.1), but without restriction 4(b), i.e.,

without the restriction that for every vertex v(v j* H), the test

predicates on all the arcs leading from v are mutually exclusive.

This implies that the class of all the non-deterministic abstract

programs includes as a proper subclass the class of all the abstract

programs.

The notions of non-determInistic program CP,Jt) and non-determi ni stic

interpreted program (GP^/y) are defined exactly as for abstract

programs (see sections 2.2 and 2.3).

^'«^ *fflw <'-''0vcrm»*n>m**-'

55

Examp I e

The following diagram represents a non-deterministic abstract

program. We shall later refer to it asCf»*:

^SL IV> ilL *

p(yT

"^(x)

x ■*- fM// \\~p(x)

<3)/ / \ XC7)

Ap{f(x))

(2r

vp(x)

(5)

x-«- a

.(4)

p(x)

(6)

^ 9)

3

~p(x) x * f(x)

where

a - individual constant,

f - monadic function constant,

p - monadic predicate constant,

y - input variable,

x - program variable.

(8)

56

Since the test predicates on all the arcs leading from vertex 2

[I.e., ~p(x), p(x), and ~p(x) A p(f(x))], are not mutually exclusive

GP* is not an abstract program.

Let 3* be the following Interpretation of GP*:

D is I (the domain of the integers),

f(x) is x + I,

p(x) Is x = 0, and

a Is -2.

Then the non-deterministic program (Gf*^*) can be represented by

the domain D = I and the diagram

57

By assigning the value I to the variable y of CiJ>»,3*), we obtain

the non-deterministic Interpreted program CP*^J», I):

In a non-deterministic Interpreted program CP^J/y) there may

exist a vertex v and two distinct arcs a j and «„ leading from v, such

that control may reach vertex v with x = f, feCtl)", whi le both

<Pa (?) = T and <p (T) = T.n)

cpo (5) and <ptf (5) stand for the result of substituting § for y

in«p and» respectively.
I a2

58

1+ follows that In general a non-determlnlstlc interpreted

program (Qp,3»Y' d065 no+ define a unique execution sequence

<3tiP»3»Y> »s for Interpreted programs (see sec. 2.3), but a set

i<fiP>?I.V>i of execution sequences.

Example

The Interpreted program (QP»,3», 1) defines two execution

sequences:

(1,1,-2) (3,2,-1) (7,H,-l), and

(1,1,-2) (3,2,-1) (5,3,-2) (8,3,-1) (8,3,0) (9,H,0).

Let (GP,3»Y) be a non-deterministic interpreted program, and

^iP,3»Y> be any fixed execution sequence of 1<EP,3/Y>i-

Let vtV be any vertex of QP, and 6 be a specified total predicate

from (D)n into lT,Fj.

Then,

1. 6 i s ca I Ied a va I i d predicate of v for <^P»3>V>>

if

VS, 5«(0^)n: Pf for some Ul, there exists a triple of the

form U,v,5) in <CP,3,^, then 6(5) = T.

2. 6 is ca I led the minima I valid predicate of v for <3(ip,3,Y>

if

V?. IftDj": (>(l) = T if and only if for some UL, there

exists a triple of the form (/,v,5) in <QP,3,Y>-

t'Wl'aß ^m,,.-.TV^n^xm.n.■ Hj i «i ■.■.n]N.«9*1 Wi»

59

5.2 Weak Termination

Let Cp be any abstract program, and lnL^ be the wff obtained from

Gp by applying Algorithm I (see sec. 3.1).

Definition 7

A non-deterministic program (Cp,3) is said to terminate weakly, if

Vy, Y«(D«> » there exists at least one finite execution sequence

I" l<QP,3'Y>i.

The proof of the following theorem Is similar to the proof of

Theorem I in sec. 3.2.

Theorem 5

The non-determinictic program (Cip,3) terminates weakly,

if and only If

%p'3' ,s unsatisfiable [or equivalently, Mfcp.g) is valid].

Definition 8

A non-deterministic abstract program Gp Is said to terminate

weakly if

for every interpretation g, the program (Cp,3) terminates weakly.

60

Tlie proof of the fo! lowing theorem follows from Theorem 5 and

Definition 8 (see the proof of Theorem 2 in sec. 3.3).

TTiwrm $

Tlie non-determlnlstlc abstract program Op terminates weakly.

If and only If

VL^ is unsatlsfiable [or equivalently, -^jp is valid].

61

5.3 The Algorithm to Construct Uj*

In this section we shall describe an algorithm to construct from

a given abstract program GP a wff iLp. in the next section we shal I

state results about the relation between Op and U|jp.

Algorithm 3

Let Gp be any non-deterministic abstract program with program

variables x = (x-.x,,.. .,xn), n > I, and input variables y = (y, »Vj»-• • »Vj'

m i 0. We shai i construct the wff lljy. In three steps:

Step I

Associate with every vertex v. of GP a predicate variable qj,

where the q.'s are distinct n-adic predicate variables.

Stan 2

Let v. be any vertex of GP (v. t H).

Let a.,cr2,...,a be the set of all the arcs leading from v. to

v. ,v. v. respectively. In step I we have associated with the
'l '2 'N

vertex v. the predicate variable q. and with the vertex Vj , I < j 5 N,

the predicate variable q. .

We shall define the wff W (the wff of the vertex v.) as
vl

V v^j!, cVq'j (?aj)]

an.

62

1 If v ■ S (I.e., v. 's the start vertex of CP), then replace

the occurrence of q.te) In W by T, and
1 vl

2 If v = H (I.e., v. Is the halt vertex of GP), replace the

'j JJ
occurrence of q. (t^) in W by F.

'j "J I

SteoS

Let v,,v~t...,Vu be the set of all the vertices of GP (except H),
I 2 M

then def i ne ll^ as

(I)

V ^^v.^v/ "'^ V

'Note that the input variables y are free variables in \p.

63

EaamaJa
The wff UL«, of the non-determlnls+lc abstract program Gp» of

sac. 5.1 will be constructed as follows:

Combining steps I and 2 we obtain

Ws: T 3 l[~p(y) A q^a)] V [p(y) A q3(y)]J

W,: q^x) 3 l[~p(x) A q2(f(x))] V [p(x) A qjCx)])

W2: q2(x) 3 l[~p<x) A p(f(x)) A qjCa)) V [p(x) A q^a)] V [~p(x) A F]J

W3: q3(x) 3 l[M>(x) A q3(f(x))l V [p(x) A F]).

Then by step 3 It follows that

\(»
is <x)[W- A W. A W, A H].

64

5.4 Strong TTIBInation of Non-Detarmlnlstlc Programs

"«f'n'tlon 9

A non-deterministic program (Cp,3) Is said to terminate strongly

If

VV, Y«(0)m, all the execution sequences In l«CP,3,V>} "re finite.

The non-determlnlstlc program (Gp,3) terminates strongly

If and only If

(la. ,3) Is unsatlsflable [or equlvalently, (~^jp,3) 's valid].

Proof

We shall prove that (00,3) does not terminate strongly If and

only If (l^p.3> l8 satlsflable.

I. (ap,3) does not terminate strongly» (^,,.3) '« satisflabie.

If (CP^) does not terminate strongly, there exists a

y, Y«<D >m» Bnd an ««cutlon sequence <liP,3,r>, «ßP,3^cl<ßP,3,Y>J.

which is infinite.

Let us assign to each predicate variable q, In 1^,, the minimal

valid predicate of the vertex v, for the execution sequence •rfP,3'V>«

Note that since the execution sequence <CP,3,Y> '* Infinite, I.e.,

control never reaches the halt vertex, it follows that the predicate F

Is the minimal valid predicate of the vertex H for «CP,3,Y>.

Let r consists of the above assignments for the q^s and with Y

assigned to y. Following the construction of ^ (see sec. 5.3,

65

especially note the V connective used In step 2), It Is clear that the

value of (Ujjp.g,?) Is T, I.e., (^,3) Is satlsflable. This completes

the proof In one direction.

2. ^tp.S' 's satlsflable» (CP,3) does not terminate strongly.

If fl^jp*)) Is satlsflable, there exist an assignment T for

O^jp^J) such that the value (>l(jp,3,r) is T. T consists of assignments

of specified total predicates «,, mapping (0L)n Into iT.FJ, for the

predicate variables Qj, and an assignment y, Yt(CL)m, for the free

variables y.

By the construction of 1^,, this implies that each 8. is a valid

predicate of the vertex Vj for some execution sequence ^iP,3#Y>»

^»P,3,V>«1<CP,3,Y>), and therefore thfcf F is a valid predicate of the

halt vertex for ^iP,3»^.

This Implies that the execution sequence «CP,3,y> Is Infinite

(I.e., execution does not reach the halt vertex). So, (QP,3) does not

terminate strongly.

q.s.d.

66

The above result can be used to prove the convergence of

recursively defined functions.

Let us consider, for example, the functions F.(x) and F.(x)

defined recursively by the following Algol conditional statements:

FjU) ■ Jl x - 0 then I

else If x > 0 then 2 • F((x-I)

else F2(-x) • FjCx+l);

F2(x) - 11 x ■ 0 Itaa 2

else Ü x < 0 then 3 • F2(x+2) ♦ 7

V else iF.d-x)]2.

Suppose that we want to prove that for every Integer x, the

recursive process of computing F.(x) and F-(x) terminates. We can use

Theorem 7, since:

for every Integer x, the recursive process for computing F|<x)

and F_(x) terminates,

If and only If

the following non-determlnlstic program (over 1} terminates

strongly.

67

x*x-| x*x+l

[Consider vwtex I as representing the start of the computation of

FjCx) and vertex 2 as representing the start of the computation of

F2(x).]

68

5.5 Strong Termination of Non-DetermInistic Abstract Programs

A non-deterministic abstract program GP is said to terminate

strongly, if for every Interpretation 3# the non-deterministic program

CP,3) terminates strongly.

The following theorem follows from Theorem 7 and Definition 10.

Theorem 8

A non-deterministic abstract program GP terminates strongly

If and only if

Ujjp is unsatlsflabie [or equivalently, "^hp 's valid].

Proof

GP terminates strongly,

if and only If (follows by Definition 10)

for every interpretation 3, the non-deterministic program (Cp,3)

terminates strongly,

if and only if (follows by Theorem 7)

for every I nterpretation 3, (l&.0»3) 's unsatlsf iable,

if and only If

ML is unsatlsf labie.

69

Thaorwn 8 Is a generalization of Theorem 2 of sec. 3.3. Moreover,

all the results presented In sec. 3.4 (Corollaries I and 2) can also

be generalized for the strong termination of non-determlnlstic abstract

programs.

m—>w

70

REFERENCES

Ackerman [1954]

Ackermann, W., jplyaj)^ Cases at $£ Decision Problem. North-Hoi land

Publishing Company, Amsterdam (1954).

Church [1956]

Church, A., Introduction to Mathematical Logic. Volume I,

Princeton University Press, Princeton, New Jersey (1956).

Davis and Putnam [I960]

Davis, M. and H. Putnam, "A Computing Procedure for Quantification

Theory," J.. Mftl (3), 201-215 (July, I960).

Friedman [1963]

Friedman, J., "A Semi-Dec I si on Procedure for the Functional

Calculus," J. ACM 10 (I), 1-24 (January, 1963).

Kleene [1950]

Kleene, S. C, Introduction to Mathematics. D. Van Nostrand

Company, Inc., Princeton, New Jersey (1950).

Kleene [1967]

Kleene, S. C, Mathematical Logic. John Wiley & Sons. Inc.,

New York (1967).

Luckham, Park and Peterson [1967]

Luckham, D. C. D. M. R. Park and M. S. Paterson, "On Formalised

Computer Programs," Prcgramming Research Group, Oxford University

(August, 1967).

71

Mendelson [1964]

Mendelson, E., Introduction to Mathematical Loajc, D. Van Nostrand

Company, Inc., Princeton, New Jersey (1964).

Robinson [1965]

Robinson, J. A., "A Machine-Oriented Logic Based on the Resolution

Principle," i. ACMJld), 23-41 (January, 1965).

wi"Kii»jiiiiimiii!i.jWH^

72

PART II

Introduction

Since Part I and Part II of the thesis are Inlanded to be self-

contained units, the background Information necessary to understand

Part II Is entirely contained In this part.

An Interpreted graph IG consists of a finite directed graph, and

1, With each vertex v, there Is associated a domain Dv, and

2. With each arc a leading from vertex v to vertex v', there are

associated a total test predicate Pa (Dv * |T,Fj), and a total

function f (0v A Pa +DvI).

Let us represent by a state vector x the current values of the

variables during an execution of an Interpreted graph IG, An

execution sequence of IG may start from any vertex v with any

Initial state vector x tD . The domain Dv Is the set of all

possible state vectors at vertex v, PB represents the condition that

arc a may be entered from Its origin, and fa represents the operation

of changing the state vector x to fa(x) when control moves along

arc a. In general, the flow of control through an Interpreted graph

Is a non-determlnlstlc process. I.e., more than one arc may be

entered from a given vertex with a given state vector. Execution

will halt on vertex v> with state vector x. If and only If no predicate

on any arc leading from v Is true for x.

73

An Interpreted graph terminates If and only If all the execution

sequences of IG terminate.

In this part, two necessary and sufficient conditions for the

termination of Interpreted graphs are described. The first condition

(Theorem I) Is defined by means of well-ordered sets and the properties

of the cycles of the graph, while the second condition (Theorem 2) Is

defined by means of the strongly connected components of the graph.

Floyd [1967] has discussed the use of well-ordered sets for

proving the termination of programs.

These results have applications In proving termination of various

classes of algorithms, such as deterministic and non-determlnlstlc

programs and recursively defined functions.

74

CHAPTER I: MATHEMATICAL BACKGROUND

I.I Well-Ordered Sets

A pair (S, >) Is called an ordered set, provided that S Is a set

and >• Is a relation defined for every pair of distinct elements a

and b of S (and only between distinct elements), and satisfies the

following two conditions:

1. If a)• b, then either a > b or b > a;

2. If a > b and b >• c, then a > c (I.e., the relation Is

transitive).

A we I l-ordered set W Is an ordered set (S, » In which every

non-empty subset has a first element; equlvalently. In which every

decreasing sequence of elements a > b > c ... has only finitely many

elements.

Examples;

1. I|
+ - the set of all non-negative integers well-ordered by

Its natural order. I.e., {,0, I, 2, 3, ...J.

2. I + - the set of all n-tuples of non-negative Integers for
n

some fixed n, n i I, well-ordered by the usual lexicographic

order. I.e.,

<a|'a2 V > (bl'b2 V

If and only If

ai = bj, a2 » b2,...,ak_| = b^,, ak > bk for some k, I ^ k ^ n.

75

3. 1, - th« Mt of all Infinit« monoton« non-lncr«aslng sequences

of non-negative Integers with finitely many non-«ro

entltlos well-ordered by th« usual l.xlcographlc ord«r.

I.e.,

(a(,a2,a3,...) > {b(,b2,b3f...)

If and only If

a, " b|. »2 " ^'•••'ak-l ' bk-l' 8k > bk for *«"• k, I i K.

1.2 Dlr«ct«q Graphs

A dlr«ct«d .gra^ G (graph, for short) Is an ordered triple <V,L,A>

where:

1. V Is a non-empty set of elements called the vertices of G;

2. L Is a non-empty set of elements called the labels of G; and

3. A Is a set of ordered triples (v./.v»), where v»Vf v'tV and

UL. These triples are colled the arcs of G.

If V and L are finite sets, G is called a finite directed graph.

.^ !'e:i lh.e ,nfln,te sequence (a,,« ,a ,...) Is In the set If
and only If 31, I ^ i, s.t. ' z 3

VKI < t): a, Is a positive Integer and Bj ^ a , and

VKI i I); a, =0.

For exc-nole, (5.5,4,3,3,3,3,1,0,0,...) Is an element in this set.

76

L«t a - (v.i.v') b« an arc of a directed graph. Than wa define:

• • v - the Initial vert^ of the arc,

2. i - the label of the arc,

3. v' - the terminal verte^ of the arc.

And »e shal I say that the arc a Jtafc ictm the vertex v 1ft the

vertex v1.

Let v be a vertex of a directed graph. Then,

1. The number (finite or Infinite) of all arcs a<A, s.t. v Is

the Initial vertex of a. Is called the out-degree of v.

2. The number (finite or Infinite) of all arcs a«A, s.t. v Is

the terminal vertex of a. Is called the In-degree of v.

A Hnlte .gath of a graph G (£ath, for short) Is a finite sequence

of n, n i I, arcs of 6

Al '| I
[notation: v Uv —L^ ... —^]#

1 2 3 n 'n-H

s.t. the terminal vertex of each arc coincides with the Initial vertex

of the succeeding arc.

We say that:

I. The path rngftta the vertices v , v, v. , and these
1 2 "♦I vertices are sa the path.

77

2. The path Joins the vertices v. and v.
'l 'n+|

3. The path Is elementary If the vertices v. , v.v.
'l '2 'n+l

are distinct.

4. The path Is a cycle If the vertex v. coincides with the
'l

vertex Vj , further It Is an elementary cycle If In

addition the vertices v. , v.v, are distinct.
'l '2 'n

An Infinite path of a graph G Is an Infinite sequence of arcs of

G s.t. the terminal vertex of each arc coincides with the Initial

vertex of the succeeding arc. A subpath of an Infinite path Is a

consecutive subsequence (finite or Infinite) of Its arcs.

We define a ällSSl of a graph G as a set of vertices having the

property that every cycle meets at least one vertex of the set.

A graph G Is said to be strongly connected If there Is a path

Joining any ordered pair of distinct vertices of G.

Let G be a graph <V,L,A>. We define a subgraph G. - <)l.,l,A.>

of G as the triple consisting of Vj, L and A., where V. Is a subset

of V and Aj Is defined by A. - A A (V. x L x V.).

A subgraph Gj » ^j.L.A^ of G is said to be a strongly connected

component of 6 If,

1. Gj Is strongly connected, and

2. For all subsets V-, £ V s.t. V2)» V, and V2 3 V,, the subgraph

Gj ■ <V2,L,A2> is not strongly connected.

78

A tree T • <V,L,A,r> is a directed graph <VfL,A> with a

distinguished root reV, s.t. for every vcV (v f r), there Is at least

one path from r to v.

We shall use the following version of Kttnlg's Infinity Lemma:

A tree with no I n f I n I te paths and with finite out-degree for

every vertex - J_s f I n I te.

BLANK PAGE

79

CHAPTER 2: DEFINITIONS

An Interpreted graph IG consists of a finite directed graph

<V,L»A>, and

1. With each vertex vcV, there Is associated a domain 0 , and

2. With each arc a = (v,i,vl)cA, there Is associated a total

test predicate P (D -► {T,F}), and a total function

f (D A P -►D).
a v a v

Let (v ,x '•VxD,, be an arbitrary vector of an

interpreted graph IG.

An (v .x) - execution-sequence of IG Is a (finite or

Infinite) sequence of the form

(v^,x(o)) 4Üi(v<V), ilü^V^, ^

where,

1. vCJ)<V, i<j)«L and x(j)«D ... for all j ;> 0.
v J

2. If {v(j),x<j)) i—► (v(J+l),x<j + l)) Is in the sequence, then

there exists an arc a = (v(j>,jt(<i),v(j+l))*A s.t. P x(j) =

True and f x(J> = x(J+l).
a

3. If the sequence is finite and the last vector in the sequence

is (v ,x), then for all arcs aeA leading from v :

P x<n) = False.
a

80

By the definition of Interpreted graphs, there may exist In an

Interpreted graph IGi a vertex vtV, a state vector xtOv, and two

distinct arcs a,beA leading from v - s.t. both Pax ■ True and

P x ■ True, I.e., the predicates on all arcs leading from the
b

vertex v are not necessarily mutually exclusive. It follows, that

for the fixed vector (v<o),x<0>) « V x D (o), there may exist many

distinct (v(o),x<o)) - execution sequences of IG. For this reason,

the execution process of an Interpreted graph, starting with the

vector (v(o>,x(o)), Is described by a tree.

The execution tree T(v(o).x(o)) Is the tree ■cVM-.A«, (v(o),x<o))>,

where,

1. The set of vertices V1 Is the set of all vectors (v,x) « V x Dv

s.t. there exists an (v ,x) - execution sequence of IG

that contains the vector (v,x).

2. L Is +he set of labels of IG.

3. The set of arcs A' Is the set of all triples C(v,x) ^.(vSy))

€ V' x L x V s.t. there exists an (v tx
(o) - execution

sequence of IG that contains (v,x) * (v^y).

4. (v^x^XV1 Is the root-yertex of the tree.

ei

JE29BUÜA

Consider th« Interpreted graph IC*

;c-l

(whore I Is the set of the Integers).

"Hiere are three (1,-4) - execution sequences In IG», I.e.,

three execution sequences that start from the vertex I with x ■ -4,

(I) (1,-4) I (2,-2) I (2,0),

(II) (1,-4) * (2,4) 1 (1,-3) I (2,-1) * (2,1) 1 (1,0), and

(III) (1,-4) * (2,4) 1 (1,-3) * (2,3) 1 (1,-2) I (2,2) 1 (1,-1) * (2,1) 1 (1,0).

The execution tree T(l,-4) of IGf Is:

82

(1,0) .

83

CHAPTER 3: TERMINATION OF INTERPRETED GRAPHS

3.1 Termination of Interpreted Graphs (Theorem O

Definition

An Interpreted graph Is said to Iscmjjläla If »I I Its execution

sequences are finite .

Notations

Let o, = (a|.a2 aq), where a. = ^.l^,^*"^ for

I ^ j < q, be any path of an Interpreted graph. Then let

1. f x stand for f (...(f (f x))...), and
« 8q a2 al

2. P x stand for
or

^(D^a.^^^a.^ A W^l^^'" '| a2 a| 03 "2 a\

(f (...(f (f >
Sq aq-l a2 al

A P (f (...(f (t x))...)) A f x.D (,,.
a a__i a- oi >•..-'

Jf an Interpreted graph IG terminates,

then there exists for every vertex v.V a total function Fv

which maps 0v Into I,*, such th«t for every arc a = (v,i,v') of IG and

for every x s.t. P_x = True:

F (x) > F .(f (x)).
V v a

'i.e., V(v,x), (v,x)cV x Dv, all the {v,x) - execution sequences

are finite.

84

froof

Assuming that IG terminates, we have to specify F (x) for arbitrary

vtV and xcD .
v

Since IG terminates, we know that the execution tree T(v,x) has

no Infinite paths. Moreover, since every vertex of T(v,x) has a

finite out-degree It follows by Konlg's Lemma that T(v,x) Is finite,

I.e., has finitely many vertices.

So, let Fv(x) be the number of vertices in T(v,x).

Now, It Is easy to verify that for this choice of F the condition

is satisfied.

q.e.d.

Theorem I

An Interpreted graph IG terminates if and only If there exist:

1. A cut set V» of the vertices V of IG, and

2. For every vertex vcV*, a well-ordered set W = (S , >•) and
v v v

a total function F which maps D into S .
V r V v

such that,

3. For every cycle a of IG:

85

..(I) ,,, .(2)
v(l) i^ v(2) J^l v(3) v(q-|) X^ v(q, /^ v(l)

(where v(ntV* and v(k) ^ v(l) for all I < k ^ q), and for

every x s.t. P x = True:

F
V^

(X) >> '/oV-

Proof

• Necessary condition for termination.

Follows directly from the lemma (with V* = V and W = i + for

every v, vcV).

* Sufficient condition for termination.

Proof by contradiction.

Let us assume that IG does not terminate, i.e., there exists an

infinite execution sequence y in IG,

Y: (v
(0',x(°),^(v(",x(l',^(v<2).x(2))l^

Let Y' he the infinite path

Y': v
(0)^v<l)4iliv(2)l^

Since IG, by definition, consists of a finite directed graph,

and since Y' is an infinite sequence - it follows, that there exists

at least one elementary cycle 0 in IG, that occurs (as a subpath)

infinitely many times in Y'-

86

Since V» Is a cut set. It follows that there exists a vertex

v*eV» that Is on ß. This Implies that v* must occur Infinitely many

11mes In Y'.

(n.) (n-) (n,)
Let v ,v ,v ,... (0 < n . < n .+! for j i I), be the

Infinite sequence of all occurrences of the vertex v* In y'-

Therefore, the Infinite execution sequence y can be written as

,„, ,„, ,(0) (n.) (n.) /"l'
Y: (v

(o,.x(o)) *— ... (v ' ,x ') ^—♦

(n,) (n,) /V (nz) (nT) /"s
5

(v Z ,x Z) 2 ► ... (v 3 (x
3)i ►

Then, by condition (3) it follows that

(n.) (n.) (n)

i.e., there Is an Infinite decreasing sequence in W .. But this

contradicts the fact that W . I s a well-ordered set. v*

q.e.d.

The following corollaries follow directly from the lemma and

Theorem I.

87

Corollary I

An interpreted graph IG, which has a vertex v* cannon to all

its (elementary) cycles, terminates

It and only i±

there exist a well-ordered set W = (S, >) and a total «unction F

which maps Dv# into S, such that for every elementary cycle

or: v* •*..."♦ v« and tor every x s.t. P x = True:
or

F(x) > F(f (x)).
a

Corollary 2

An interpreted graph IG terminates

if and only i±

there exist:

1. A cut set V» of the vertices V of IG,

2. A well-ordered set W = (S, >), and

I. For every vertex vtV*, a total function F.. that maps D

into S,

such that

4. For every elementary path a of IG:

.(I) (2) (q-l)
,'" !_>v<2) L_v(3) v(q-,) i >v(q,

(where v ", v(q)cV* and v'^'^V* for all j, I < j < q).

88

and for every x s.t. P^x) = True:

F (I)"0 >F (q)(V><))'

3.2 Termination of^ Interpreted Graphs (Theorem 2)

Let IG be an interpreted graph constructed from the finite

directed graph G.

Then a strongly connected component IG^ o^lG conststs of a

strongly connected component G1 = <V',L.A'>of 6, and in addition,

I. With each vertex vtV. there Is associated the domain 0
v

of IG, and

2. With each arc a«A•, there are associated the test-predicate

Pa and the function f of IG.

Theorem ?

An Interpreted graph IG terminates

i f and only |f

all its strongly connected components terminate.

Proof

• Necessary Condition for Termination

Follows directly from the definition of termination of

interpreted graphs.

H9

* ?g»fi<;i?nt Condition for Termination

Proof by Contradiction.

Let's assume that IG does not terminate, i.e., there exists an

infinite execution sequence y i" IG,

V: (v^x'o'.i^u'lVM^ (,(2)^(2), 4^

Let Y' be the infinite path

Y': v^l^v'"^^)^...

Since IG, by definition, consists of a finite directed graph

G - It follows that IG contains finitely many vertices. So clearly,

there ere only finitely many vertices of G that meet y' only a finite
(nl' <",) (n)

number of t,mes. Let v '.v 2 v " (0 < n. < n for
~ J J+l

' 1 j< q), be the list of their occurrences inY'.

It follows that all the vertices v(J) (j > n) of Y'. are in

some strongly connected component G' of G.

This implies that there exists a strongly connected component

IG' of IG, s.t. the infinite subsequence of y:

-.'V'',,'"«-', Li:',/"«'..'%«>, Ijl

is an infinity execution sequence of IG', i.e., IG- does not terminate.

Contradiction.

q.e.d.

BLANK PAGE

'ü"""1
Uipmil. 4 iniai

90

CHAPTER 4: APPLICATIONS

The results of Chapter 3 can be used for proving termination of

various classes of algorithms. In this section we shall Illustrate

the use of those results for proving termination of:

1. Programs, and

2. Recursively defined functions.

In the first example, we shall use the notion of valid

interpretation. Roughly speaking, a valid Interpretation of a flow-

chart Is a mapping of its test-boxes to propositions, such that, if

the test-box B is mapped to the proposition q, and if the flow of

control through the flowchart can reach the test-box B with 5 as the

value of the state vector, then q(5) = True (see Floyd [1967]).

4,1 ExampIe I :

Consider the program (Figure I) for evaluating a determinant

la. .1 of order n, n ^ I, by Gauslan elimination. Where,

0 - real variable,

(a: :'r ^ • ^ ■ real array, 1 J I < i/J < n "

i,j,k - integer variables,

n - integer constant.

[We consider the division operator over the real domain as a

total function, by interpreting, for example, r as — for every
10

real r.]

91

D-0II
'i

k ♦ 1

i

(k"* v es /-

 Kl!.
D-D'akk

1

no

1 ,

i ♦ k + 1

b ^. L a. 1

i

1

yes r .„) l i = n

no

j -n 1*1+1

i

9S

I

(-
v-, VI j -j " 1 M j

■ I

i
1

a.. .a..-X.. .
U iJ akk kJ

Figure I

92

k * k + I

 1 :

yes

V n positive integer

k * I

c
'

(I i k ^ n)A

(k,n integers)

Z>^-<B

,- k ♦ I 1

i • n + I 3

J " n u
I 1 itä*c/
I J «■ j - I ^ j = k? ^ Z£

((I i k < n - I)

A <2 £ I < n ♦ I)

A (i,kfn integers)

i ^ I ♦ I

(I < k £ n - I)

A (2 ^ I < n)

A (k + l £ j < n + l)

A (i,j,k,n integers)

Figure 2

93

<I.J>I<) ♦ (I, l,k+|)

I-«»- D,

kk ^ n

(I £ K^ n) fdSK

I A(k,n integers)

i » n ♦ I (l.j.k) -(k+l,j,k)

(i.J.k) ♦ (l+l,j,k)i

){l £ k ^ n - I)

A(2 i I £ n + I)

A(l,k,n Integers)

* n ♦

j • k (l.j.k) ♦ (l,nfk)

d.J.k) * (l.j-l.k)

j D

j »« k

(I ^ k i n - I)

A(2 i I £ n)

A{k ^ j £ n)

Ad.j.k.n Integers)

Figure 3

94

We want to show that the program terminates for every positive

integer n.

Since neither 0 nor any a . occurs In a test-box or affect the

value of any variable that occurs In a test-box. It is clear that by

erasing the following three assignment boxes:

D ♦ D • akk , and

a, . 4. a. . '— • a. ..
U U ekk kj'

we do not change the termination properties of the program. In other

words,

For every i nteger n, the or I g i na I program (Figure J_) terminates

j_f and only J_f the reduced program (Figure 2^ terminates.

One can verify easily that the set of predicates attached to the

test-boxes of the flowchart of Figure 2 - considering the initial

predicate "n positive integer" - is a valid interpretation.

Let's construct now, from the reduced program (Figure 2), the

appropriate Interpreted graph (Figure 3), s.t. each vertex I,

I < i < 3, of Figure 3 corresponds to the test-box B. of Figure 2,

and its domain D.i is exactly the valid interpretation q. of Figure 2.

95

Note that we have used theorem 2 here, by considering only the

strongly connected component of our graph.

It is clear that,

Ü the i nterpreted graph (Figure 3) terminates, then the

reduced program (Figure 2) terminates for every positive Integer n.

Now, use corollary 2, where

V* = 12,3J is the cut set,

W = I3 is the well-ordered set,

F2(i'J.k) = (n-l-k, n+l-l, n+l) is the mapping of D into W, and

F3<i»j,k) = (n-l-k, n+l-i,j) is the mapping of D, into W.

Note that when control moves:

(i) along the path ba, the value of k is increased by I

(i.e., the value of n-l-k is decreased by I),

(ii) along the arc d, the value of k is not changed while the value

of i is increased by I (i.e., the value of n+l-i is decreased

by I),

(ill) along the arc c, the values of k and i are not changed while

j is assigned the value n, and

(iv) along rhe arc e, the values of k and i are not changed while

the value of j io decreased by i.

Therefore it follows, by Corollary 2, that

The interpreted graph (Figure 3) terminates.

96

This implies that our Gaussian elimination program (Figure I)

terminates for every positive integer n.

4.2 Example 2:

Consider the function gcd(x,y) (McCarthy [i960]). gcd(x,y)

computes the greatest common divisor of x and y (where x and y are

positive integers), and Is defined recursively using the Euclidean

A I gor Ithm by

gcd(x,y) = [x > y -► gcd(y,x);

rem(y(x) = 0 -► x;

T -► gcd(rem(y,x) ,x)],

where rem(u(v) Is the remainder of —.
v

The Algol meaning of this definition is:

gcd(x,y) = it x > y then gcd(y,x)

else If rem(y,x) = 0 then x

else gcd(rem(y,x),x).

We want to show that for every pair (x,y) of positive Integers,

the recursive process for computing gc1(x,y) always terminates.

97

(x.y) * (rem(y,x),x) (x.V) * (y.x)

(x / y) A (rem(y,x) ^ 0)

D . .positive, ^positive,
1 integers1 lintegers'

Fi gure 4

Eiy considering vertex I in Figur., 4 as representing the start

of the computation of gcd. for each pair (x.y), It follows that:

For every pair of positive integers (x,y), the recursive

process for computing gcd(x,y) tarminates,

i f and only if

the interpreted graph (Figure 4) terminates.

Since this interpreted graph consists only of one vertex, we

shall use Corollary I to show its termination.

So, let l_S_i1 be the well-ordered set, and F(x.v) = remty,^

the mapping of D into W.

98

Since the graph contains two elementary cycles, or and f}, we have

to show:

1. V(x,y): P (x,y) = True« F(x,y) > F(y,x), and
Or

2. V(x,y): Pa(x,y) = True =• F(x,y) > F(rem(y,x) ,x).

Proof:

I • Pa<x.y)
s True • (x#y)tD A (x > y)

» (re(ii(y,x) = y) A (y > refn(x,y) ^ 0)

■» remCy.x) > re(n(x,y)

"• F(x,y) > F(y,x) .

2. P.Cx.y) = True =» (x,y)eD A (x ^ y) A (rem(y,x) ^ 0) A (rem(y,x) ,x)eD

^ (x positive integer) A rem(y#x) positive integer

• rem(y,x) > rem(x,rem(y,x))

=» F(x(y) > F(rein(y ,x) ,x).

So by corollary I, it follows that the interpreted graph

(Figure 4) terminates, which Implies the desired result.

*Note that for every non-negative integer x, and for every
positive z; z > rem(x,z) > 0.

99

REFERENCES

Floyd [1967]

Floyd, R. W., "Assigning Meanings to Programs," Proceedings of

Symposia in Applied Mathematics. Volume 19, American Mathematical

Society, 19-32 (1967).

McCarthy [I960]

McCarthy, J., "Recursive Functions of Symbolic Expressions and

Their Computation by Machine, Part I." Cownunicat ions of the

A£M3 (4), 184-195 (April, I960).

